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LETTER TO THE EDITOR 

Interface dynamics under the elastic field 
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Department of Physics, Ochanomizu University, Tokyo 112, Japan 

Received 2 October 1990 

Abstract. The interface equation of motion is derived in a system in which the local order 
parameter is coupled with the elastic strains. As a special case, the dynamics of spherical 
domains growing in a metastable matrix is studied. In a non-conserved system it is shown 
that larger domains grow dominantly around smaller domains when the shear modulus of 
the new phase is larger than that of the matrix, while the size difference of domains tends to 
diminish when they are softer than the matrix. 

The elastic effect often plays a crucial role in the kinetics of a first-order phase transition. 
When a system is quenched below, but near, the transition point, the high-temperature 
phase becomes metastable. New domains of the low-temperature phase nucleate and 
grow at the expense of the metastable state. In many solid materials that undergo 
structural phase transition and phase separation, the two phases often exhibit different 
lattice structures. This causes an elastic strain in both the domains and the metastable 
matrix, so a long-range elastic interaction evolves between the domains. Here we 
consider the case in which the elastic strain around a domain is coherent [l]. 

The theoretical study of the elastic interaction in a system with two different lattice 
structures has a long history. Ardell et a1 [2] calculated the interaction energy between 
two inclusions in a linear elastic theory. A comprehensive study of structural transitions 
in which the order parameter is not conserved has been given by Khachaturyan [l]. In 
the phase separation problem in which the order parameter is a conserved quantity, the 
importance of the elastic effects on the kinetics was discussed by Cahn [3]. Recently 
Kawasaki and Enomoto [4] have investigated, in detail, the growth dynamics of spherical 
domains in Ostwald ripening based on the interaction obtained by Ardell et al. They 
have studied the time evolution of the domain radius distribution for small values of the 
volume fraction of the new phase. One of the conclusions is that when the matrix is 
harder than the precipitates, the domains cease to grow. This implies that the localized 
domains can be made to exist stably by the elastic interaction. (In a thermodynamical 
sense, this state is metastable. The uniform low-temperature state has a lower free 
energy.) It seems, however, that no dynamical theory of domain growth under the elastic 
field has been available for a non-conserved system. 

In this letter, we derive the interface equation of motion under the elastic field for 
both conserved and non-conserved systems. As a particular example, we apply the 
equation of motion to the growth of spherical domains. 
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We take the following model equations. The local order parameter field S(r, t )  obeys 

aS/at = -1iVI" 6H{S, u}/6S (1) 
where a = 0 for a non-conserved system, a = 2 for a conserved system and 

K 
2 H { S ,  U} = I d r  [tlVSl' + W ( S )  - AS2(V. U) + - (V e U)' 

The local displacement is denoted by u(r,  t )  whose ith component is U,. The last two 
terms with the elastic moduli K and p are the elastic energies at small deviations. Here, 
for simplicity, we do not consider the elastic anisotropy. The coupling constant A is 
assumed to be positive without loss of generality. The function W ( S )  is an even function 
of S with the absolute minimum at S = 0 and two local minima at S = +So where So is 
positive and finite. An example is given by W ( S )  = S2(1 - bS2 + S") with b 6 2. 

In order to take account of the difference in elastic properties between the high- 
temperature phase with S = 0 and the degenerate low-temperature phases with 
S = +So, we allow S-dependence of K and p whose precise forms will be given below. 

We assume mechanical equilibrium for u(r, t ) :  

6H/6u, = 0. (3) 
The free energy functional (2) and its variants have been introduced and studied in 

various problems. The gas-liquid transition of hydrogen atoms absorbed in metals 
has been investigated on the basis of a model similar to (2) [ 5 ] .  Recently, spinodal 
decomposition under the elastic interaction has been studied using (1) and (3) with (2) 
[6, 71. In these cases, the order parameter S is a concentration and is a conserved 
quantity. The form of W ( S )  and the coupling between S and V - U utilized in [5]  and [6] 
are slightly different from those in (2). A one-dimensional version of (2) has been 
introduced to obtain a stable localized domain (but with a singularity in the spatial 
variation of the order parameter) in a martensitic transition such as in TiNi [8]. The 
order parameter in this case is the amplitude of the displacement corresponding to the 
low-temperature structure and hence it is a non-conserved quantity. Finally, it is noted 
here that the elastic effect in a commensurate-incommensurate transition in ferroelectric 
materials [9] has been studied in the same spirit as the model (2). Application of the free 
energy functional, like (2), to both conserved and non-conserved systems has also been 
considered [lo]. 

Our aim is to derive the interface equation of motion in the two-phase region from 
equations (1)-(3). Because of the degeneracy of the ordered phase, K and p should be 
even functions of S. Here we put K = KO + K 1 S 2  and p = po + p1S2. First we solve 
equation (3) to eliminate U for given S(r, t) .  This can be performed perturbatively for 
small values of K 1  and pl. Since the calculation is straightfoward [6], we write only the 
results here. We have V - U up to the first order in pl and au,/ax, up to the lowest order 
as follows 

v * u =  + dr" G(r ,  r')did; (S(r')2A40(r', r")S(r")2) (4) L + K,S(r)'  L ij 

s (r ' )2  
L + K1 S(r')2 

auj/axi = -Aajaj  d r '  G(r, r ' )  I 
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where d l  means d /dx l  and L = KO + 4/3 po. The Green function G(r, r’)  is defined by 
the relation 

-V2G(r, r ’ )  = S(r - r’) 

M r l ( r ,  r’) = -(2A/L)[d,d,G(r, r r )  + (6,/3)6(r - r ’ ) ] .  

(6) 

(7) 

and 

The results (4) and (5) are essentially the same as those obtained by Onuki [6]. 

equation for S: 
Substituting (4) and ( 5 )  into (l), and after some manipulation, we obtain a closed 

dS /d t  = -/iViQ SF{S} /SS  (8) 
where F{S} is given up to the first order in K ,  and p ,  by 

dr” S ( r ) 2 ( M o ( r ,  r r ) S ( r ’ ) 2 )  ( M i l ( r ’ ,  r”)S(r”)2) 

(9) 

The last term is not symmetrized with respect to the arguments r,  r’ and r” .  Notice that 
there are two contributions from the elastic field. One is the A-coupling which is local 
and modifies the form of W ( S )  effectively. When S 2 K , / L  < 1, as we have assumed, and 
the coupling constant A is not extremely small, the potential W ( S )  renormalized by the 
A 2  terms in (9) takes a form such that the two local minima at S = * S O  turn out to be 
stable absolute minima while the state with S = 0 becomes metastable. Hereafter we 
use the same notation *So for the locations of the new minima. The other contribution 
arises from the S-dependence of the shear modulus, which gives rise to the long-range 
non-local interaction of S(r) as the last term in (9). We note from ( 5 )  that if 
S(r)2 = Si,  du,/dx, = 0 for i # j and the last term in (9) vanishes, as expected, in the 
uniform low-temperature state. 

Now we consider the kinetics of domain growth in the low-temperature phase 
S = *So. Initially the system is supposed to be the metastable uniform state with S = 0. 
As the decay of the metastable state proceeds, domains emerge and grow. A sharp inter- 
face is constituted between the domains and the surrounding region. If we identify S(r)* 
with the local concentration C ( r ) ,  then equation (8) with (9) can be applied to spinodal 
decomposition in binary solids [ 5 , 6 ] .  

Using the method developed previously [ 111, we readily obtain from (8) the interface 
equation of motion for a non-conserved case: 

V(a) = H ( a )  + c + E(a)  (10) 
where V(a)  is the normal component of the interface velocity at point a on the interface 
and H ( a )  the mean curvature. The last term E(a) ,  which comes from the elastic inter- 
action, is given by 

E ( a )  = - fi ( S O ) 6  2 20 dr ’  I d r ”  [ M r j ( r ( a ) ,  r ’ ) M i j ( r r ,  r ” )  
li D D 

+ 1Mij(r(a), r ’ ) M o ( r ( a ) ,  r‘f)] 
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where (7 is the interfacial tension. The integrals with respect to r’ and r” run over all the 
domains. The constant c in equation (10) is proportional to the free energy difference 
between the metastable and the stable states, whose value is given if we specify the form 
of the renormalized potential. In the conserved case [11], the left-hand side of (10) is 
replaced by 

(Si/a) 1 da‘  C ( r ( a ) ,  r’(a’))V(a’). 

The constant c is, therefore, determined from the conservation of the total volume of 
the domains. 

As an example, we apply equation (10) to spherical domains in three dimensions. 
First, note that since 

C M,, ( r ,  r r )  = 0 
,! 

there is no self-interaction. The two-body interaction is obtained as follows. Suppose 
that there are two domains with radius R ,  at X ,  and R? at X , .  We assume that the distance 
/ X I  -X,l  is large compared with R I  and R2 and that the positions XI and X ,  are inde- 
pendent of time. If r(a) is the surface of the first sphere, the first term in (11) does not 
vanish when the integrals over r l  and r2 are inside the second and the first domains, 
respectively. The second term in (11) gives a finite contribution if the integrals are in the 
second sphere. Generalizing this to many domains, we obtain in a non-conserved system 

where y = 2p1 SgA2/3aL2. We have introduced the critical radius R, instead of the 
constant c. For a conserved case, the left-hand side should be replaced by 

This together with (12) is consistent with the results obtained in [4] where the short- 
distance correction in the long-range interaction has been taken into account. It is noted 
here that a three-body interaction also arises from (11). However, we do not write it 
down since it does not dominate the binary interaction. 

Equation (12) indicates that if y (or p i )  is positive-in other words, if the domains 
are harder than the matrix-the growth becomes slow as the domain radius increases. 
However, the details depend crucially on the radius of each domain. Let us focus our 
attention on two adjacent domains with the radius R, and R,. If R, > R,, equation (12) 
shows that the growth rate of the i-domain is larger than that of the j-domain. This 
implies that a larger domain grows more rapidly and eventually dominates the sur- 
rounding smaller domains. On the other hand, if the domains are softer (p l  < O), the 
growth is accelerated. A smaller domain grows rapidly compared with a larger one. Thus 
as the domains keep growing and before they merge, the radius distribution becomes 
narrower. When the order parameter is conserved, the domains cease to grow because 
of the conservation law, as was shown by Kawasaki and Enomoto [4]. 

The above property of domain growth can also be understood energetically. When 
,ul is positive, the elastic energy increases as the domain radius is increased, as is easily 
seen from the last term in (9). Note that M ,  is a positive definite quantity. Thus larger 
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domains grow rapidly while other domains remain small to suppress the increase in the 
elastic energy. It would be possible for the smaller domains to shrink and disappear, 
although this process is beyond the validity of the present perturbation theory. When 
p1 is negative, the energy decreases as the domains expand. Most favourable is the 
situation in which all domains grow with the same radius if they are equally spaced. 

To conclude, we have derived the interface equation of motion under the long-range 
elastic interaction. Application to spherical domains shows that depending on the sign 
of p ,, the growth kinetics exhibit drastically different behaviour. Any isolated localized 
domains cannot exist stably for a non-conserved system modelled by (1) in contrast to a 
conserved case. 

The author is grateful to Professor Y Yamada for his availability for discussion on 
premartensitic transitions and related problems over the past three years. 
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